The emerging role of Presepsin for diagnosis and monitoring of neonatal sepsis
Neonatal sepsis

Neonatal sepsis, especially late-onset sepsis (LOS) continues to be a major source of morbidity and mortality in very-low-birth-weight infants (VLBW <1500 g) or pre-terms. The International Pediatric Sepsis Consensus Conference defined sepsis as “the systemic inflammatory response syndrome in the presence or as a result of a suspected or proven infection” (1). Major causes of infection include bacteria such as coagulase-negative Staphylococci and multiple other aggressive pathogens, such as the Klebsiella-Enterobacter-Serratia group, Pseudomonas, and Candida species. Survivors suffer from neuro-developmental impairment during at least the first 2 years of life (2).

Sepsis biomarkers in neonatal care

C-reactive protein (CRP) is generally considered an inflammation/infection marker for diagnosis of sepsis used in addition to bloodculture, but is not very specific. In newborns, procalcitonin (PCT) levels show a physiologic increase 24-48 hours after birth and decreases to normal levels after 3 days. PCT increases in hypoxia, respiratory distress syndrome (RDS) and hemodynamic instability, which lowers its specificity for sepsis. The proinflammatory cytokine IL-6 increases quickly after onset of the infection, but returns to undetectable levels during 24 h.

D-Dimer is generated by thromboembolic situations that are not necessarily linked to sepsis. It is not a specific sepsis marker but may be a useful indicator of the coagulation status of the infant and the requirement for anticoagulant therapy (4,5). Presepsin shows promising performance in diagnosing sepsis in neonates and prognosing severity of the disease.

Presepsin biochemistry

Presepsin (sCD14-ST) is a specific and sensitive biomarker for sepsis. Presepsin levels rise after 2 h, earlier than IL-6 and PCT, with a peak 3 h after onset of the infection and a decline after 4-8 hours (6). Presepsin can be used for monitoring of treatment with antibiotics and can show effectiveness of antibiotics. It is a reliable tool for early diagnosis of sepsis caused by Gram-positive and Gram-negative bacteria or fungi (7) and is accurate in neonatal sepsis using special cut off values which are higher than in adults (8).

Presepsin secretion is linked to the Toll Like 4 Receptor (TLR) and its sensor function is well developed in newborns. Levy et al. (11) described in preterm and full-term neonates significantly higher expression levels of TLR4 on peripheral blood monocytes both at baseline and after LPS stimulation, compared to adults. In the same study, they also observed significantly higher CD14 expression at baseline and after LPS stimulation in full-term neonates compared to adults.

Presepsin is a 13 kDa fragment derived from cleavage of CD14, a glycoprotein of 55k Da anchored to the membrane of monocytes, macrophages and polymorph- phic neutrophils. CD14 acts as a receptor for lipopolysaccharide (LPS) complexes and the specific LPS binding protein (LBP). It can bind to peptidoglycans and other surface structures present in both Gram-Positive and in Gram-Negative bacteria. Once bound to the LPS-LBP complex, it activates the intracellular inflammatory response of the Toll-Like receptor 4 (TLR4), triggering the host’s inflammatory cascade against the infectious pathogenic agent. The phagocytosis and the activity of the plasma proteases (lysosomal enzymes, cathepsin D) result in the formation of the fragment of the sCD14 subtype, in particular the 13 kDa fragment of sCD14-ST, known as Presepsin (Fig.1, 6).
Presepsin in neonatal sepsis (LOS and EOS)

The diagnostic validity of Presepsin in neonatal sepsis has been evaluated in numerous clinical studies. Pugni et al. (12) enrolled 684 healthy neonates (484 born at term and 200 preterm) for evaluation of reference ranges for Presepsin. Presepsin median value in term infants was 604 pg/mL whereas in preterm infants the Presepsin median value was slightly higher (620 pg/mL). The normal reference ranges of Presepsin observed were higher than those seen in healthy adults. The Presepsin level was not affected by gender, ethnicity, mode of delivery, small for gestational age (GA), twin, maternal fever/elevated CRP, and stained amniotic fluid. Reliable reference values are important for adequate diagnostic accuracy. Based on current clinical study results, most factors affecting C-reactive protein and procalcitonin levels do not affect Presepsin levels. Presepsin can discriminate between infections and non-infectious inflammatory conditions.

Xiao et al. (7) evaluated 42 neonates with hematosepsis, 54 newborns with nonhematosepsis, 44 noninfectious SIRS neonates (n=140) and 53 healthy controls. Before treatment Presepsin, CRP, white blood cells (WBC) and PCT were determined. Furthermore, APACHE-II score was assigned for all samples before and after treatment. Presepsin levels were significantly higher in neonatal hematosepsis than in noninfectious SIRS or control group. Interestingly, Presepsin levels were positively correlated with APACHE-II score. During treatment with antibiotics, Presepsin levels decreased together with APACHE-II score, PCT, CRP and WBC. Presepsin showed an Area under the curve (AUC) value of 0.942 with a corresponding sensitivity of 95.2% and specificity of 84.9%, respectively. The calculated cut off value was 786 pg/ml (7, Fig. 3).

Poggi et al. (8) prospectively studied newborns ≤32 weeks gestational age with LOS (n=19) and noninfected controls (n=21) at 4 to 60 days postnatal age. At enrollment and at day 1, 3 and 5 the biomarkers CRP, PCT and Presepsin were measured in the LOS group with single measurements of Presepsin in the control group. Presepsin was higher in the LOS than in the control group at enrollment (1295 vs. 562 ng/L) and was elevated throughout the evaluation period. The Receiver-Operating-Characteristic curve (ROC) for Presepsin at enrollment showed specificity of 94% and sensitivity of 54% for IL-6, 78% sensitivity and 70% specificity for IL-8, sensitivity of 97.5% and specificity of 88.9% for PCT. Presepsin showed 100% sensitivity and 94% specificity (Fig. 2). Other studies showed lower sensitivity and specificity for CRP, PCT and IL-6. These data support the potential role for Presepsin as a marker for monitoring the response to antibiotic treatment in preterm infants.

<table>
<thead>
<tr>
<th>Group</th>
<th>Cases</th>
<th>Presepsin (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram-positive group</td>
<td>25</td>
<td>802.92 (669.55–936.28)</td>
</tr>
<tr>
<td>Gram-negative group</td>
<td>17</td>
<td>761.24 (550.54–971.92)</td>
</tr>
<tr>
<td>Healthy control group</td>
<td>53</td>
<td>124.20 (113.73–134.68)</td>
</tr>
</tbody>
</table>

Presepsin is a biomarker for early identification and disease valuation in newborns hematosepsis infection with Gram-positive and Gram-negative bacteria with a high diagnostic value compared to other laboratory indexes like CRP, PCT and WBC (7, Tab.1).
Diagnostic accuracy of Presepsin, cut off values and blood sampling in neonates

Tab. 2: Study compilation Presepsin in neonates and cut off values

<table>
<thead>
<tr>
<th>Cut off/ mean reference values (pg/ml)</th>
<th>Cases</th>
<th>AUC</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 650; preterms: 620</td>
<td>684 healthy neonates, 200 preterms</td>
<td>n.a.</td>
<td>Pugni et al., 2015 (12)</td>
</tr>
<tr>
<td>885</td>
<td>19 LOS neonates, 21 healthy neonates</td>
<td>0.972</td>
<td>Poggi et al., 2015 (8)</td>
</tr>
<tr>
<td>600</td>
<td>65 critically ill, 25 non-infective neonates</td>
<td>0.995</td>
<td>Mussap et al., 2015 (13)</td>
</tr>
<tr>
<td>788</td>
<td>32 EOS, 38 non-infective neonates</td>
<td>0.97</td>
<td>Montaldo et al., 2016 (9)</td>
</tr>
<tr>
<td>786</td>
<td>140 septic, 53 healthy neonates</td>
<td>0.942</td>
<td>Xiao et al., 2016 (7)</td>
</tr>
<tr>
<td>812</td>
<td>50 septic, 20 healthy neonates</td>
<td>0.99</td>
<td>Tabl et al., 2016 (14)</td>
</tr>
<tr>
<td>539</td>
<td>29 EOS, 40 healthy neonates</td>
<td>0.772</td>
<td>Ozdemir et al., 2016 (15)</td>
</tr>
<tr>
<td>801</td>
<td>42 EOS, 40 healthy neonates</td>
<td>0.864</td>
<td>Topcuoglu et al., 2016 (16)</td>
</tr>
<tr>
<td>722</td>
<td>80 septic, 40 healthy neonates</td>
<td>0.99</td>
<td>Sabry et al., 2016 (17)</td>
</tr>
<tr>
<td>875</td>
<td>40 septic, 15 healthy neonates</td>
<td>0.95</td>
<td>Osman et al., 2015 (18)</td>
</tr>
<tr>
<td>672</td>
<td>28 EOS, 34 healthy neonates</td>
<td>0.95</td>
<td>Motalib et al., 2015 (19)</td>
</tr>
<tr>
<td>795</td>
<td>48 septic, 18 healthy neonates</td>
<td>0.868</td>
<td>Miyosawa et al., 2018 (20)</td>
</tr>
<tr>
<td>406</td>
<td>40 preterm LOS, 40 healthy neonates</td>
<td>0.896</td>
<td>Astrawinata et al., 2017 (21)</td>
</tr>
<tr>
<td>686</td>
<td>49 septic, 29 healthy neonates</td>
<td>0.784</td>
<td>Mostafa et al., 2015 (22)</td>
</tr>
</tbody>
</table>

Tab. 3: Diagnostic accuracy of Presepsin and resulting cut off values (10)

<table>
<thead>
<tr>
<th>Cut off (pg/ml)</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>DOR (95% CI)</th>
<th>AUC (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 650</td>
<td>0.91 (0.83-0.96)</td>
<td>0.85 (0.77-0.91)</td>
<td>71.78 (7.46-690.56)</td>
<td>0.9634 (0.0439)</td>
</tr>
<tr>
<td>650-850</td>
<td>0.91 (0.86-0.95)</td>
<td>0.97 (0.94-0.99)</td>
<td>542.72 (156.62-1880.60)</td>
<td>0.9915 (0.0046)</td>
</tr>
<tr>
<td>≥ 850</td>
<td>0.90 (0.82-0.95)</td>
<td>0.86 (0.77-0.93)</td>
<td>75.60 (8.32-686.53)</td>
<td>0.9681 (0.0316)</td>
</tr>
</tbody>
</table>

Bellos et al. (10) and Ruan et al. (23) recently published two meta-analysis’ summarizing cut off values of Presepsin for exclusion of sepsis in neonates. Furthermore, Ruan et al. showed superior diagnostic accuracy of Presepsin for neonatal sepsis diagnosis when compared with simultaneous use of CRP and PCT (AUC = 0.99 vs AUC = 0.96) whereas Bellos et al. recommended the use of three different threshold values which are in good alignment with 14 clinical study publications shown in Tab. 2. Recommended cut off values were 650, 650-850, 850 pg/ml with corresponding AUC of 0.9634, 0.9915, and 0.9681, respectively. These findings are comparable with the summary listed in Tab. 3. A preliminary cut off value of ≤650 pg/ml for exclusion of sepsis seems to be appropriate for neonates. Presepsin values ≥850 pg/ml indicate a bacterial infection. A grey zone from 650-850 pg/ml still remains to be validated by further studies. Blood sampling for Presepsin measurements can be taken on the first day of sepsis prior to the initiation of empirical antibiotic therapy, 12, 24 and 48 hours of age (9).
References

23. Ruan L, Chen GY et al.: The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review. Critical Care 2018 1 (116)
Product List

PATHFAST™ for critical care and sepsis diagnostics

<table>
<thead>
<tr>
<th>Item number</th>
<th>Pack size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114-0000</td>
<td>1 x 1</td>
</tr>
</tbody>
</table>

SYSTEM

PATHFAST™ Immunoanalyser
Analyzer for the detection of cardiac and other emergency parameters and sepsis

CONSUMABLES AND ACCESSORIES

- **PATHFAST™ pipette tips**
 Item number: 1114-1000
 Pack size: 5 x 42 units

- **PATHFAST™ waste box**
 Item number: 1114-1001
 Pack size: 10 units

REAGENT KITS FOR CRITICAL CARE DIAGNOSTICS

- **PATHFAST™ hs-cTnI**
 Item number: 1110-5000
 Pack size: 60 tests

- **PATHFAST™ Myoglobin**
 Item number: 1110-2001
 Pack size: 60 tests

- **PATHFAST™ CK-MB**
 Item number: 1110-2002
 Pack size: 60 tests

- **PATHFAST™ D-Dimer**
 Item number: 1110-2003
 Pack size: 60 tests

- **PATHFAST™ NTproBNP**
 Item number: 1110-2004
 Pack size: 60 tests

- **PATHFAST™ hsCRP**
 Item number: 1110-2005
 Pack size: 60 tests

REAGENT KITS FOR SEPSIS DIAGNOSTICS

- **PATHFAST™ Presepsin**
 Item number: 1110-4000
 Pack size: 60 tests

- **PATHFAST™ Presepsin control set**
 Item number: 1110-4001
 Pack size: 4 x 1 ml

LSI Medience Corporation

13-4 Uchikanda 1-chome, Chiyoda-ku,
Tokyo 101 - 8517, Japan
Phone: +81 - 3 - 67 22 - 40 80
Facsimile: +81 - 3 - 67 22 - 40 81
email: Pathfast@mc-e.de

www.PATHFAST.eu